Segmentation of spoken speech from unlabeled ECoG signals: A pilot study with an ALS participant Miguel Angrick¹, Shiyu Luo¹, Qinwan Rabbani¹, Shreya Joshi¹, Daniel N. Candrea¹, Griffin W. Milsap², Chad R. Gordon¹, Kathryn Rosenblatt¹, Lora Clawson¹, Nicolas Maragakis¹, Francesco V. Tenore², Matthew S. Fifer², Nick F. Ramsey³, Nathan E. Crone¹ ¹The Johns Hopkins University, Baltimore, MD, USA; ²Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA; ³UMC Utrecht Brain Center, Utrecht, The Netherlands ## Motivation - Brain-Computer Interfaces (BCIs) can potentially restore communication for people living with neurological disorders - Approaches to speech synthesis require targets time-aligned with neural activity for successful model training - Becomes more difficult to obtain in later stages of disease progression, if at all - This pilot study makes first step toward acoustic-free modeling aimed at identifying spoken speech from ECoG - Participant with ALS enrolled in ongoing CortiCom clinical trial (ClinicalTrials.gov, NCT03567213) - Approved by the Johns Hopkins Institutional Review Board (IRB) and the FDA under an investigational device exemption (IDE) ## Experiment Design & Approach - Acquired ECoG activity during overt production of single words from a pool of 50 words (10 recording days) - Utilized graph-based clustering algorithm designed to find subsequences in multivariate time series data ## Identification of Speech Segments - Obtained hyperparameters from epilepsy patient - Inferred cluster classes through experiment design - Estimated labels used to train predictive model (RNN) for real-time decoding - Compared with models trained on ground-truth acoustic information - Cluster assignment mainly driven by activity differences in a subset of electrodes