TOWARDS RESTAURATION OF ARTICULATORY MOVEMENTS: FUNCTIONAL ELECTRICAL STIMULATION OF OROFACIAL MUSCLES

Tanja Schultz, Miguel Angrick, Lorenz Diener, Dennis Küster, Moritz Meier, Dean J. Krusienski, Christian Herff, Jonathan S. Brumberg

3.9

Motivation

- Neurological diseases can lead to speech impairments which might result in the complete loss of speech production abilities
- Brain-Computer Interfaces could facilitate the restauration of natural communication
- So far, research focused on the conversion of neural signals into text (Brain-to-Text) and directly into speech (Brain-to-Speech).

Here, we envision to restore speech production by using functional electrical stimulation (FES) of orofacial muscles directly inferred from neural signals

Articulatory Movements

FES Experimental Design

- Investigate acoustic effects of muscle stimulation
 - 1. During self-controlled stimulation (SCS)
 - 2. Externally-controlled stimulation (ECS)
 - 3. No stimulation (reference)
- Five subjects participated in the study
 - Several sessions per subject
 - Wearing noise cancelling earphones
 - Subjects produce a neutral, audible vowel by voicing
- Targeted stimulation of single muscle
- Zygomaticus major
- Evaluation refers to most promising subject

tanja.schultz@uni-bremen.de

Thanks to Medel Medizinische Elektronik HGmbH for providing the MOTIONSTIM 8 device

Pre-Analysis of Muscle Activity during Vocalization

- Identification of orofacial muscle movements relevant to articulation using electromyography (EMG)
- Voluntary production of Vowels [a] and [e]; VCV [ava] and [eve]
- Analysis of seven relevant orofacial muscles
 (1) depressor anguli oris, (2) levator labii superioris,
 - (3) zygomaticus major, (4) orbicularis oris inferior,
 - (5) levator anguli oris, (6) masseter, (7) mentalis

• FES focuses on zygomaticus major since it is relevant to V[v]V production, isolated from other muscles (reduce cross-stimulation), easy to locate, and distant from critical areas avoiding side-effects of stimulation.

Results

- 1. Visual comparison of spectral features between voluntary articulation, SCS, and ECS
- 2. Correlation analysis: Pearson correlation of spectral features prior to stimulation and complete segment

Conclusion: First insights into the challenges and potential of speech production via functional electrical stimulation of orofacial muscles

- Voluntary articulations relatively stable across trials,
 SCS articulation patterns closer to REF than ECS
- Confirmed reasonable closeness by listening to stimulated speech output examples.

